Speakers - Héctor Joaquín Fraire-Huacuja

A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME
Héctor Joaquín Fraire-Huacuja
Instituto Tecnológico de Ciudad Madero

Talk Abstract:We propose a new method for multi-objective optimization, called Fuzzy Adaptive Multi-objective Evolutionary algorithm (FAME). It makes use of a smart operator controller that dynamically chooses the most promising variation operator to apply in the different stages of the search. This choice is guided by a fuzzy logic engine, according to the contributions of the different operators in the past. FAME also includes a novel effective density estimator with polynomial complexity, called Spatial Spread Deviation (SSD). Our proposal follows a steady-state selection scheme and includes an external archive implementing SSD to identify the candidate solutions to be removed when it becomes full. To assess the performance of our proposal, we compare FAME with a number of state of the art algorithms (MOEA/D-DE, SMEA, SMPSOhv, SMS-EMOA, and BORG) on a set of difficult problems. The results show that FAME achieves the best overall performance.

Bio: Héctor Joaquín Fraire Huacuja is a research professor in the postgraduate courses in Computing at the Tecnológico Nacional de México Campus Cd. Madero. He holds a Bachelor's Degree in Mathematics and a Master's Degree in Information Systems from the Universidad Autónoma de Nuevo León and a PhD in Computer Science from the Centro Nacional de Investigación y Desarrollo Tecnológico del Tecnológico Nacional de México.
He has been recognized for 13 consecutive years as a member of the Sistema Nacional de Investigadores of CONACYT, in which he currently has Level II. His research is focused on the exact and heuristic optimization of complex problems with practical applications in science and engineering.
He has published more than 30 articles in indexed journals (JCR), 65 book chapters, and 12 articles in non-indexed journals. He has been a principal researcher in 5 research projects and has directed 6 doctoral theses. More information can be found in